On May 12th, the biaseparations.com website will be retired and migrated to sartorius.com. Learn more about our combined offering today!
2021

Thanaporn Liangsupree, Evgen Multia, Marja-Liisa Riekkola

Journal of Chromatography A, Volume 1636, 2021

Abstract

Extracellular vesicles (EVs) are heterogenous membrane-bound vesicles released from various origins. EVs play a crucial role in cellular communication and mediate several physiological and pathological processes, highlighting their potential therapeutic and diagnostic applications. Due to the rapid increase in interests and needs to elucidate EV properties and functions, numerous isolation and separation approaches for EVs have been developed to overcome limitations of conventional techniques, such as ultracentrifugation. This review focuses on recently emerging and modern EV isolation and separation tech- niques, including size-, charge-, and affinity-based techniques while excluding ultracentrifugation and precipitation-based techniques due to their multiple limitations. The advantages and drawbacks of each technique are discussed together with insights into their applications. Emerging approaches all share sim- ilar features in terms of being time-effective, easy-to-operate, and capable of providing EVs with suitable and desirable purity and integrity for applications of interest. Combination and hyphenation of techniques have been used for EV isolation and separation to yield EVs with the best quality. The most recent de- velopment using an automated on-line system including selective affinity-based trapping unit and asym- metrical flow field flow fractionation allows reliable isolation and fractionation of EV subpopulations from human plasma.

Attachments

Full view

2020

by Simon Staubach, Pete Gagnon, Katja Vrabec, Tjaša Lojpur, Sebastijan Peljhan, Bernd Giebel and Aleš Štrancar

BioProcess International, 2020

Abstract:

The traditional classification of extracellular vesicles (EVs) includes three types: exosomes, microvesicles, and apoptotic vesicles. Each type arises from a distinct origin and exhibits distinct characteristics. The problem is that their size ranges overlap and that the major surface proteins presented by exosomes also are present on the surfaces of microvesicles and apoptotic bodies. This makes it a challenge for process developers to identify the vesicle fraction that best serves a particular exosome therapy. Anion-exchange chromatography (AEC) can fractionate EVs into populations of different composition. This article highlights the complementarity of two analytical methods for characterizing distinctions among EV populations separated by AEC: imaging flow cytometry (IFCM) and size-exclusion chromatography.

Download full eBook

Full view

E. Multia, T. Liangsupree, M. Jussila, J. Ruiz-Jimenez, M. Kemell and M. Riekkola

Analytical Chemistry, 2020

Abstract:

An automated on-line isolation and fractionation system including controlling software was developed for selected nanosized biomacromolecules from human plasma by on-line coupled immunoaffinity chromatography asymmetric flow field-flow fractionation (IAC-AsFlFFF). The on-line system was versatile, only different monoclonal antibodies, anti-apolipoprotein B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk columns for isolation of lipoproteins and extracellular vesicles (EVs). The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated by IAC, were further fractionated by AsFlFFF to their sizebased subpopulations (e.g., exomeres and exosomes) for further analysis. Field-emission scanning electron microscopy elucidated the morphology of the subpopulations, and 20 free amino acids and glucose in EV subpopulations were identified and quantified in the ng/mL range using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The study revealed that there were significant differences between EV origin and size-based subpopulations. The on-line coupled IAC-AsFlFFF system was successfully programmed for reliable execution of 10 sequential isolation and fractionation cycles (37−80 min per cycle) with minimal operator involvement, minimal sample losses, and contamination. The relative standard deviations (RSD) between the cycles for human plasma samples were 0.84−6.6%.

Attachments

Full view

U. Černigoj, A. Štrancar

DNA Vaccines. Methods in Molecular Biology, vol 2197, pp 167-192

Abstract

Purification of high-quality plasmid DNA in large quantities is a crucial step in its production for therapeutic use and is usually conducted by different chromatographic techniques. Large-scale preparations require the optimization of yield and homogeneity, while maximizing removal of contaminants and preserving molecular integrity. The advantages of Convective Interaction Media® (CIM®) monolith stationary phases, including low backpressure, fast separation of macromolecules, and flow-rate-independent resolution qualified them to be used effectively in separation of plasmid DNA on laboratory as well as on large scale. A development and scale-up of plasmid DNA downstream process based on chromatographic monoliths is described and discussed below. Special emphasis is put on the introduction of process analytical technology principles and tools for optimization and control of a downstream process.

Buy protocol

Full view

M. Morani, T.Duc Mai, Z. Krupova, P. Defrenaix, E. Multia, M. Riekkola, M. Taverna

Analytica Chimica Acta 1128 (2020) 45-51

Abstract

This work reports on the development of the first capillary electrophoresis methodology for the elucidation of extracellular vesicles’ (EVs) electrokinetic distributions. The approach is based on capillary electrophoresis coupled with laser-induced fluorescent (LIF) detection for the identification and quantification of EVs after their isolation. Sensitive detection of these nanometric entities was possible thanks to an ‘inorganic-species-free’ background electrolyte. This electrolyte was made up of weakly charged molecules at very high concentrations to stabilize EVs, and an intra-membrane labelling approach was used to prevent EV morphology modification. The limit of detection for EVs achieved using the developed CE-LIF method method reached 8 × 10⁹ EVs/mL, whereas the calibration curve was acquired from 1.22 × 10¹⁰ to 1.20 × 10¹¹ EVs/mL. The CE-LIF approach was applied to provide the electrokinetic distributions of various EVs of animal and human origins, and visualize different EV subpopulations from our recently developed high-yield EV isolation method.

Purchase full article

Full view

Pete Gagnon, Katja Vrabec, Tjaša Lojpur, and Aleš Štrancar

BioProcess International, 18 (4) April 2020

Abstract

Exosomes are a subject of rapidly growing therapeutic interest in the biopharmaceutical industry for two principal reasons. The first reason is that they are the primary communicators of instructions from source cells to target cells. Exosome surface features define their destination. They recognize complementary features on target cells, dock with them, and deliver their programmed instructions in the form of microRNA. The second reason is that exosomes are immunologically silent. As normal human cell products, and by contrast with gene therapy vectors such as virus particles, exosomes bypass the issue of triggering an immune response that might interfere with therapy.

Source cells include stem cells, which is why exosomes are of particular interest in the field of regenerative medicine. Recent research documenting the ability of exosomes to reverse the effects of severe strokes highlights their potential. It also underlines the need for scalable purification technology to advance these products through clinical trials and on to licensed manufacture. A platform approach was a major factor in the initial and continuing success of monoclonal antibodies. Exosomes likewise represent an extended family of individual products with similar properties. It stands to reason that a platform approach will prove equally valuable for exosomes. In this article we describe initial efforts toward that goal.

Contact us and request full article

Full view

2019

Evgen Multia, Crystal Jing Ying Tear, Mari Palviainen, Pia Siljander, Marja-Liisa Riekkola

Analytica Chimica Acta (2019).
Published online 2019 Sep 11.

A new, fast and selective immunoaffinity chromatographic method including a methacrylate-based convective interaction media (CIM®) disk monolithic column, immobilized with anti-human CD61 antibody, was developed for the isolation of CD61-containing platelet-derived extracellular vesicles (EVs) from plasma. The isolated EVs were detected and size characterized by asymmetrical flow field-flow fractionation (AsFlFFF) with multi-angle light-scattering (MALS) and dynamic light-scattering (DLS) detection, and further confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The isolation procedure took only 19 min and the time can be even further decreased by increasing the flow rate. The same immunoaffinity chromatographic procedure, following AsFlFFF allowed also the isolation and characterization of platelet-derived EVs from plasma in under 60 min. Since it is possible to regenerate the anti-CD61 disk for multiple uses, the methodology developed in this study provides a viable substitution and addition to the conventional EV isolation procedures.

Keywords: Immunoaffinity chromatography, Isolation, Monolithic disk column, Extracellular vesicles, Platelet-derived vesicles, CD61

Read full article

Full view

This discussion introduces new analytical approaches that enable in-line chromatographic detection of exosomes. One approach can discriminate extracellular vesicles from nonvesicle contaminants, and one potentially can discriminate exosomes from other vesicles. Examples illustrate how they enable development of more effective and better documented purification methods. The special qualifications of monolithic chromatography media for exosome purification are discussed. New process tools designed to accommodate some of the special challenges of exosome purification are introduced.

Feel free to download the eBook by clicking on the link to attachment below.

Attachments

Full view

2018

Miladys Limonta, Lourdes Zumalacarregui, Urska Vidic, Nika Lendero Krajnc

The main component of the Center for Genetic Engineering and Biotechnology (CIGB) candidate vaccine against Hepatitis C virus (HCV) is the pIDKE2 plasmid. The current designed downstream process for the production of pIDKE2 fulfils all regulatory requirements and renders the required quantities of pharamceutical-grade plasmid DNA (pDNA)with 95% purity. The advantages of this procedure include high plasmid purity and the elimination of undesirable additives. such as toxic organic extractants and animal-derived enzymes. However, yields and consequently the productivity of the process are low. Previous work demonstrated that the most critical step of the process is the reverse phase chromatography, where conventional porous particle resins are used. Therefore, to increase the process productivity alternative technologies such as membranes and chromatographic monoliths were tested as alternative options for this critical step. Here, a comparison between the behaviours of CIM® C4-HLD and Sartobind phenyl matrices was performed.

Attachments

Full view

2015

A.M. Almeida, J.A. Queiroz, F. Sousa, A. Sousa

Journal of Chromatography B, 978–979 (2015) 145–150

The progress of DNA vaccines is dependent on the development of suitable chromatographic procedures to successfully purify genetic vectors, such as plasmid DNA. Human Papillomavirus is associated with the development of tumours due to the oncogenic power of E6 and E7 proteins, produced by this virus. The supercoiled HPV-16 E6/E7 plasmid-based vaccine was recently purified with the arginine monolith, with 100% of purity, but only 39% of recovery was achieved. Therefore, the present study describes the application of experimental design tools, a newly explored methodology in preparative chromatography, in order to improve the supercoiled plasmid DNA recovery with the arginine monolith, maintaining the high purity degree. In addition, the importance and influence of pH in the pDNA retention to the arginine ligand was also demonstrated. The Composite Central Face design was validated and the recovery of the target molecule was successfully improved from 39% to 83.5%, with an outstanding increase of more than double, while maintaining 100% of purity.

Purchase full article

Full view

Zunyang Ke, Yu Wang and Zhongming Li

Anion-exchange chromatography is a key capture step in downstream processing plasmid DNA (pDNA). Separation of pDNA using traditional particle-based anion-exchange supports is usually slow and has a low capacity for pDNA due to steric exclusion effects. Due to convective mass transfer properties, and large flow-through channels for binding large biomolecules, monoliths have been shown to provide a fast and efficient alternative for pDNA purification. This study describes the use of monoliths for purification of a therapeutic pDNA vaccine against multidrug resistant tuberculosis (MDR TB).

Attachments

Full view

Urh Černigoj, Urška Martinuč, Sara Cardoso, Rok Sekirnik, Nika Lendero Krajnc, Aleš Štrancar

Sample displacement chromatography (SDC) is a chromatographic technique that utilises different rela-tive binding affinities of components in a sample mixture and has been widely studied in the context ofpeptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoformsunder overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) orlinear isoform. Since displacement is more efficient when mass transfer between stationary and mobilechromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM)monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobic-ities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) weretested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoformseparation was shown to be dependent on column selectivity for individual isoform, column efficiencyand on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative modeelution often operate in parallel, therefore negative mode elution additionally influences the efficiencyof the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNAhomogeneity and a dynamic binding capacity of over 1 mg/mL at a relatively low concentration of AS.SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes,and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used.This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, whichis compatible with continuous, multicolumn chromatography systems, and could therefore be used toincrease productivity of pDNA production in the future.

Attachments

Full view

2013

E. Mota, A. Sousa, U. Černigoj, J. A. Queiroz, C. T. Tomaz, F. Sousa

Journal of Chromatography A (2013)

The demand for high-purity supercoiled plasmid DNA to be applied as a vector for new therapeutic strategies, such as gene therapy or DNA vaccination has increased in the last years. Thus, it is necessary to implement an analytical technique suitable to control the quality of the supercoiled plasmid as a pharmaceutical product during the manufacturing process. The present study describes a new methodology to quantify and monitor the purity of supercoiled plasmid DNA by using a monolithic column based on anion-exchange chromatography. This analytical method with UV detection allows the separation of the plasmid isoforms by combining a NaCl stepwise gradient. The specificity, linearity, accuracy, reproducibility and repeatability of the method have been evaluated, and the lower quantification and detection limits were also established. The validation was performed according to the guidelines, being demonstrated that the method is precise and accurate for a supercoiled plasmid concentration up to 200 μg/mL. The main advantage achieved by using this monolithic column is the possibility to quantify the supercoiled plasmid in a sample containing other plasmid topologies, in a 4 min experiment. This column also permits the assessment of the supercoiled plasmid DNA present in more complex samples, allowing to control its quality throughout the bioprocess. Therefore, these findings strengthen the possibility of using this monolithic column associated with a powerful analytical method to control the process development of supercoiled plasmid DNA production and purification for therapeutic applications.

Purchase full article

Full view

S. Haberl, M. Jarc, A. Štrancar, M. Peterka, D. Hodžić, D. Miklavčič

J Membrane Biol, DOI 10.1007/s00232-013-9580-5

The use of plasmid DNA (pDNA) as a pharmaceutical tool has increased since it represents a safer vector for gene transfer compared to viral vectors. Different pDNA extraction methods have been described; among them is alkaline lysis, currently the most commonly used. Although alkaline lysis represents an established method for isolation of pDNA, some drawbacks are recognized, such as entrapment of pDNA in cell debris, leading to lower pDNA recovery; the time-consuming process; and increase of the volume due to the buffers used, all leading to increased cost of production. We compared the concentration of extracted pDNA when two methods for extracting pDNA from Escherichia coli were used: alkaline lysis and a method based on membrane electroporation, electroextraction. At the same time, we also studied the effect of different pulse protocols on bacterial inactivation. The concentration of pDNA was assayed with anion exchange chromatography. When alkaline lysis was used, two incubations of lysis time (5 and 10 min) were compared in terms of the amount of isolated pDNA. We did not observe any difference in pDNA concentration regardless of incubation time used. In electroextraction, different pulse protocols were used in order to exceed the pDNA concentration obtained by alkaline lysis. We show that electroextraction gives a higher concentration of extracted pDNA than alkaline lysis, suggesting the use of electroporation as a potentially superior method for extracting pDNA from E. coli. In addition, electroextraction represents a quicker alternative to alkaline lysis for extracting pDNA.

Purchase full article

Full view

B. Gabor, U. Černigoj, M. Barut, A. Štrancar

Journal of Chromatography A, 1311 (2013) 106-114

HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0 kbp, 5.2 kbp and 14.0 kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport.

Purchase full article

Full view

M. Limonta, N. Lendero Krajnc, U. Vidic, L. Zumalacárregui

Biochemical Engineering Journal 80 (2013) 14-18

The pIDKE2 plasmid is the main component of the CIGB's candidate vaccine against Hepatitis C virus (HVC), which is being used in HCV chronically-infected individuals during clinical trials phase 1 and 2. The designed downstream process of pIDKE2 plasmid produces up to 179 g/year. In order to conduct further improvements, modelling of the downstream process was performed. A methodology based on process analysis tools, such as experimental design and modelling was established to identify factors with the highest influence on production cost and the amount of annual plasmid. Taking into account that the pIDKE2 downstream process designed is in its initial stages of development, CIM technology was evaluated as a new manufacturing process on lab scale. Purity and recovery of CIM technology was better than porous particle matrix, thus SuperPro Designer was used in order to simulate the purification process. Cost efficiency optimization of the pIDKE2 downstream process was done with the simulation model.

Purchase full article

Full view

P. Fagan, C. Wijesundera

Journal of Separation Science, 10.1002/jssc.201201156

Eicosapentaenoic and docosahexaenoic acids are important bio-active fatty acids in fish oils. Monolithic HPLC columns both in the polymeric cation exchange (silver-ion) and RP formats were compared with corresponding packed columns for the isolation of these acids from tuna oil ethyl esters. Monolithic columns in both formats enabled rapid (typically 5–10 min) separations compared with packed columns (30 min). Polymeric monolithic silver-ion disc column rapidly furnished mixtures of eicosapentaenoic and docosahexaenoic esters (90% purity) within 5–10 min, but was unable to resolve individual esters. A preparative version of the same column (80 mL bed volume) enabled isolation (>88% purity) of 100 mg quantities of eicosapentaenoic and docosahexaenoic esters from esterified tuna oil within 6 min. Baseline separation of eicosapentaenoic and docosahexaenoic esters was achieved on all RP columns. The results show that there is potential to use polymeric monolithic cation exchange columns for scaled-up preparation of eicosapentaenoic and docosahexaenoic ester concentrates from fish oils.

Purchase full article

Full view

J. A. Martin, P. Parekh, Y. Kim, T. E. Morey, K. Sefah, N. Gravenstein, D. M. Dennis, W. Tan

PLOS ONE, March 2013, Volume 8, Issue 3, e57341

Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT). Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug), and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction) and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.

Read full article

Full view

A. Ghanem, R. Healey, F. G. Adly

Analytica Chimica Acta 760 (2013) 1-15

Abstract

Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cellmediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

Purchase full article

Full view

A. Romanovskaya, L. P. Sarina, D. H. Bamford, M. M. Poranen

Journal of Chromatography A (2013)

Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58–1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25–27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.

Purchase full article

Full view